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Section 1. Introduction

The dynamics of a large class of engineering systems are described only

implicitly, for instance, those of non-linear circuits,swing dynamics of

an interconnected power system, as also thermodynamic systems far from

equilibrium. The implicit definition of their dynamics is as follows:

the state variables are constrained to satisfy some algebraic equations,

i.e. they are constrained to lie on a manifold M in the state space.

The dynamics on this manifold M are then specified implicitly by specify-

ing only the projection of the vector field on M onto a certain base space

above which M lies. (i.e. a subspace of the original state space of the

same dimension as M). The process of obtaining the system dynamics explicitly

:onsists of 'lifting' the specified velocities onto a vector field on M

klifting is the inverse of projecting). Lifting may" not, however, be

possible at points where the projection map (restricted to -he tanuent

spice of the constraint manifold) has singularities. This singularity

is typically resolved by regularization, i.e. by interpreting the algebraic

constraint equdtions as the singularly perturbed limit of 'parasitic' or

fast dynamics. The dynamics of the original system are obtained as the

degenerate limit of the dynamics of the regularized system - the resulting

trajectories may be discontinuous and this is referred to as jump behavior.

The foregoing deterministic theory needs to be extended to a stochastic

theory for three reasons:

a) The conditions under which the limit trajectories to the regularizations

exist are extremely restrictive so as to exclude several systems of

interest.

A*
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b) Frequently, the algebraic constraint equations arise from the macro-

scopic aggregation of microscopically fluctuating dynamics, e.g. the

flow of current in a resistor, the demand for electrical power at a

distribution point in an electrical power network. More generally,

deterministic equations describing thermodynamic systems are of this kind.

Thus, the algebraic constraint equations contain in addition a rapidly

fluctuating (or white noise) component.

c) The methods of analysis for deterministic systems of the implicitly

defined kind involve techniques of bifurcation theory - their conclusions

are extremely sensitive to imperfections and the addition of white noise.

Since in all the situations of interest to us, the intensity of the

additive noise is small, we study in this paper the dynamics of implicitly

defined dynamics in the presence of small additive noise. In fact, we

:ompare the conclusions of the stochastic theory with those of the

deterministic theory in the limit that the noise intensity tends to zero.

The foregoing process requires the computation of two sets cf limits:

the limit that the regularization tends to zero and the limit that the

intensity of the additive white noise tends to zero. In general, these

limits do not commute. We explore in this paper the modelling issue of

which sequence of limits is appropriate in the context of a specific system.

The layout of the paper where we carry out this program is as follows:

In Section 2, we review briefly the dynamics of deterministic

constrained systems and their jump behavior. With some minor modifications

we follow here our earlier work 1il] and the references contained therein.

In Section 3, we begin the study of noisy constrained dynamical

systems. For the initial stud,! we use as tools the work of Papanicolaou,

et al 1I1 on martingale approaches to limit theorems. To study the
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dynamics of noisy constrained systems in the presence of sA411 nciac.

we develop and use in our context Laplace's setnod of steeJ-tt dusc~nt.

We study in several separate cases, the caapdrtion between viv

and small noise theory, describing: (1) now Ve 5OChast.(; Vltet

yields conclusions about system dynamics when thn dtertic vleo:

fails and (ii) how the ump behavior of systems io -Adif~rd vy ttv

presence of small noise. This section is a ron: r. e nsn of o¢a

previous work in the context of phase transitions in va. 4: Vas ;

(12]. Several examples are presented to instantiate out roults.

In Section 4, we present the dctailed deter inis a ay : u!

Section 2 applied to the dynamics of an emitter cou ,e a zr

oscillator circuit. We then show tiat the ex;r~ n&ta :t .

Abidi [1] on the jynamics of these c:rc'tt. -.in t renc * -ia ,s:n:

seer not to aaree witn thc stc chastzc th:or. rese ;r. .. A

in Secticn 5, we Jiscuss the eqenzes of l- i- b : h- .

development of Section 3 - and the nature cf s% tcns f-r .-Cn,-

ment yields the correct conclusions. in art::ar, we r t.at t'w

development of Section 3 is relevant tc systems wn.ere the 4qarat;-r. ;n

time scales between the slow and fast components is 7ery .arce and la

more important than the small intensity of the white noise (characterized

by a certain sequence of limits subsumed by Section 3) - for instance in

phase transitions, reaction rates and other phenomena of non-equilibrii=

thermodynamics. For non-linear circuits, however, the separation in time

scales is less marked, so that we present here the relevant analysis

sample function calculations) for these systems with the order of limits

reversed from that of Section 3. We use as tools the foundational
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.ote that ior 4l ->Q and x 6 Itn the critical points (with respect to y

of ' (X,Y? are the egailibrium Points of the deterministic system t2.4)

with x frozen It-ven in this inst4nce by

y - - ,.ra Six~y) (3.11)

F,.4rt.er, if for some x , Six y) is a Morse function (of y), then for all

, every local m.xtmum of F (x,y) is a stable equilibrium of (3.11).

To compare tne noisy constrained system with the deterministic

:onstr3ind system in the limit that '., 0, it will be n-essary to

evaluate integrals like (3.9) in the limit that ' . This is done

,4sin trne followinq :ersion of Laplace's methcd:

3. "e .Q tLLata1:,v,3 .*4et-.od:

.et for .ach xt n , .,':x... have global min.ia at y. ,

wnere !I .,a: le, end :-. x. Let them a~l be no,-seerate. Further,

lot Sx,'".' .-,ave at ". a.t -;3dratic cr:wtr, , a3 '. Then, in

the 1xm.t that • (x.y) converges to

-"/-
-a X !.. - " * a (xI

where a. x', - det(C 3 (x,y _ (X l (3. 12)

More precisel', if t(x,Y) is a smooth function having polynomial growth

as y , then

lira x) im nt ( X,) p (x,y)dy

S a. (x) .(x,y (x)) a. (x) (3.13)

th esanDX)x,)a =":X

te fessin at y W is nonsinqular
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S(X, Y) CS (x)Proof: Since p (xy) - exp - exp -

we will first evaluate

S(x,y) exp - S(x,y) dy

for simplicity first assume that S(x,y) has a single global minimum at y.

We will then show that

f b(x,y) exp - S -a)dy = '(x,y*)( 2 A m/ 2 ) exp - S(x,y )/.ll + 0(l))
mdetD 2 S(x,y )]

2

(3.14)

First, bv the Morse Lemma(see for e.g. Milner (16])there exists
~m

a neighborhood U of y and a change of coordinates U given by

=v) such that y = y (0) and

2-- 2S(x,v/) 2 ~, 2. (31

• *

Further, outsile the neighborhood U of y', S(x,) S(xy ) + +

for some > 3 so that

(x,y) exp- y exp[ -S(x,y )] o(.) 3.16

for all 2 > 0. Clearly, then (3.16) does not contribute to the leading

term of (3.14) Consider now

f (x, .) ex - S(Xy) dy

U s {x7  r -2
exp - , ( f ex ( - (x) ,,,((y))det D ' (y),dv

(3.17)

Now, standard manipulations with Gaussian distributions yield that
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fexp - Yi ) i (y) dy

i=l

= m/2 (1 18(0) + o .)

Thus, to evaluate (3.17) we only need compute 'det D -((0): . Differentiating

(3.15) twice with respect to y yields

D 2  S (x,y) 1)T(X) 1(.9
2 dy dy 31

From (3.19) it follows that

2dt * -1/2

idet D Yf(O): f det D2 S(x, ) /

so that (3.14) now is immediate on combining (3.16), 3.17) and (3.1s)

In the instance that Six,v) has several global minima
* * *

Y .x', 'x)....' (x) .t follows from an easy extension of the fore-

0ein Lr, urment that

NS (2_,) /2 -S(x~v ) N 2 • -12

ex- - L )d = 12 ex . [ det D Sx,v (x))]

m 1=1

"(x,>' x)) + ( )](3.20)

Selling (x,y) = I in (3.20. yields the corresponding expression for

mexp S(xydy. Combining this with (3.20) we have equation (3.13).

IRi

Remarks: (1) If the growth conditions on S(x,y) and ,(x,y) are uniform in

x for x, < R it can be shown that for p > 1

J *.(x) - W(x) dx - , as* .

x 'R
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Proof: Is presented in Sastry-Hijab (12].

Remark: The order of the limits is peculiar in Theorem (3.3). If the

order is interchanged i.e. N 4 0 first and then t i 0 it is clear that

one recovers in the limit the deterministic development of Section 2

(with the minor modification that x has an additive white noise terms.

The jump-behavior or the y-variable is as explained in that section. If.

however, E 0 first and the ). 0, the jump-behavior of the y-variable

is somewhat different, as we now elaborate:

The behavior of the conditional density of y given x as I. 0 is as

in Theorem 3.2: the y variable is at one of the global minima of S(x,.)
2 *-1/2

with probability proportional to the curvature of S(x, ) (UDet C2 S(xy )
i

at that minimum. Consider first the case when the minimum is unique.

There is then a jump in the y-variable if there is a change in the alobal

minimum of S(x,') as x is varied. Points of jump then will be points of

appearance and disappearance of global minima of S(x,*). This is in

contrast to the deterministic picture of Section 2, where, for the instance

that g(x,y) is of the form of (3.11), stable equilibrium of the sped-up

system S are local minima of S(x,') and points of bifurcation are points

apearance and disappearance of local minima of S(x,,).

We illustrate this with an example - the van der Pol oscillator of

(2.5), (2.6) with added noise. Consider

x= y + 'U %,(t)

3 -Ey= -x - y + y + , ' (t)

4 2Y
Here S(x,y) = -xv - + - so that, in the limit that E * 0; the

4 2

x-process converges to one satisfyinq

k_
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p!4m* tr Ft~ge !0. Scm of the rete cf t.4i~ 4r~e note~d belosw;

,utot, . w.le for '.' :01 and o P *e0R the equation

.ta *ndy 3ne *Q'1tLon.

ILI) A~ 5 11 . L td4 0 Ss"ttC:Y

V t7 .

tr*3t@4 3tfu1 thr. Ftr~ster. :.*. at th~se points it

a n 'asibla t- ;:v. 14.7) for I -s i function of V locally

i*.". .-- :nt.- may b" *ht,-wf tc• ,v p-ints f'

Re rn;- n -cw t ', f~ %;.. t-%~tom 4. 6. and 4.") we st* that

nl: w -4. r -v. -. e i.- t .oaa I .J tvQ 6(clved

3.F

When- -,i "L'e 1 V'_ d 2Pc 1 21)V7 .2 rit

ippeir3 > nit -, -r.'-te sc is t; prevent the integr3tion of equations

(4.-,',, (4.4). The rezua~riziti'n Df this system is iccomplished by taking

int- i -cunt the fict that parasitic capacitances present in the transistors,

is wel is t! e fiite rate -f the operational amplifiers will prevent

1 -r- -: i' r.ntnucxusly ind in effect change the description of the

!no



of the circuit dynamics from (4.6) (4.7) to

d- 0- (4.6)
T C

di
d - V - (21 0 - 21)R - VT ::(21 -i)/1 (4.9)

Equations (4.6) and (4.9) are a gross simplification of all the actual

parasitics present in the circuit. A more detailed and exhaustive description

involving all the parasitics would start from the original equations (4.1) -

(4.5). The present regularized model is, however, accurate enough for our

purposes. The phase portrait of this system shown in Figure 1 includes

a sinqle unstable equilibrium point CI=0, i=01 and a limit cycle. The

.imit tra.-ectories of (4.6) , (4.9) as -AO exist and include the relaxation

oscillation shcwn in Figure 12 - a limit cycle with two discontinuities -

it the noints where the tra-ectorv switches from the .1 :,n, 2 Dff 'state'

tc the i off, '" on 'state' and vice versa. Note also from Figure 11

that the 21 :n, c2 on 'state' is unstable as evidenced by the trajectories

of (4.6), (4.9) pointini away from that 'state'. The current waveform

S(t) is as shcwr. in Figure 13. The half period of the cscillation T may be

estimated approximately by integrating equation 4.8 with the approximation

that for O<t<-T,i << lot so that we have

VT/2R VT

T C(-2R +-) di
I

or

T [2R(-V /2R + I 1 ) + V  (V /21 R)j (4.12)
10 T 1 T T 1
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From equation (4.10) it follows that the frequency of oscillation is

(approximately) lienarly proportional to I0, which enables this oscillation

to be used as an electronically tunable oscillator (e.g. in a phase locked

loop). In such applications, it is important to know the noise characteristics

of the oscillator in response to resistive thermal noise. Experimental

observations of Abidi I] indicate that the actual (noisy) cur ent waveform

is as shown in Figure 14. Key features of this figure are as follows:

(a) the transitions or jumps appear to be noise free

(b) the noise superimposed on the deterministic waveform of

Figure 13 appears to be small (low intensity) immediately

fo1lowing a jump and then appear to build in intensity.

We assume (see -.-.r[141) that all the noise sources in the circuit

can be lumped into a single-noisy current source i (t) shown dotted in
n

Figure 9: i (t) is assumed to be white with intensity '(with 'k small
n

at room temperatures, since it is proportional to kT). It is easy to check

that the equation (4.6) is now unchanged, while (4.7) changes to

0 = V - 21 - 2i)R - V Zn(21 -i)/i + 2R,7 -(t (4.11)
0 0 n

.;e regularize the system (4.6), (4.11) as before to obtain

= (I - i)/C (4.6)

El = V - (21 0  2i)R - VT Zn (21 - i)/i + 2R v Ci (t) (4.12)0n

Note that £ scales the intensity of the white noise in (4.12) precisely

for the same reason as in equation (3.2) of Section 3. The techniques of

Section 3.2 may now be used to obtain that as C40, the V-process converges

weakly on C([0,T]; IR) to one satisfying
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v = (I 0 (V))/C

where i (v) is i integrated over the conditional density for i given
-A

V,in the limit that £+O,p (i,v). As in the example of Section 3.2, we

have in the limit that X0, p (i,v) converging to a sequence of delta

functions jumping from one leg of the solution curve to (4.7) to the other

at V=0. Also, choosing the interval of weak convergence to be large it

appears that the relaxation oscillation is borken up.

This analysis is contrary to the experimental evidence of Abidi [I]

What has gone wrong? How does one recover the experimental results of

Abidi [11? These are the questions that we taken up next.
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Section 5. Sample Function Calculations.

The mathematical reason for the anomaly between the machinery developed

in Section 3 and the experimental conclusions of Section 4, is the order of

limits C+0 followed by V+O in Theorem (3.3). This order of taking limits is

suitable for explaining phenomena in several situations in non-equilibrium

thermodynamics (for e.g. phase transitions of the kind discussed in Sastry-

Hijab [121, Eyring chemical reaction rates, etc. - see for e.g. Nicolis-

Prigogine [9], Landauer [61). In fact, it has been noted by thermodynamicists

of the Brussels School that"fluctuations play a crucial role in changing

the behavior of systems near bifurcation fronts". However, this order of

limits is not fully satisfactory in the circuit context. The reason fcr

this lies in the fact that the order of limits £ O followed by \4'O (Theorem

3.3) yields the correct conclusions only when the dynamics of the fast (sped-

up) system are much faster thar those of the slower x variable. This is

so, because, as we state in Section 3.4, Laplace's method of steepest

descent nicks for the limit values of p (x,y) as -,., the most stable

-limit sets of the underlying deterministic systems. This in turn is

consistent with the i-tuition that in the presence of persistent random

perturbation (wide-band in nature) the trajectorcs of a system will

concentrate after sufficiently long periods Qf time in the vicinity of

the most-stable sets. However, the sufficiently long periods of time

may be very large indeed. It is possible to show, for example in the

gradient case of Section 3.2 that the average time required to excape from

a stable equilibrium is of the order of e k / for some k>O (see for eq.

Schuss [151, Ventsel-Freidlin (151).
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By takinq limits in the sequence -3 tollowet iiy "0v. Xt rf icaticni
-k/I-k\

is that - is smaler than e , i.e. is i t !est e i , 5. tL.t the

fast system has sufficiently much time tc zoncertrite :n the v ,r:4ty t

its .-limit sets. This is frequer.tly the situator. r.

theromodynamics where the slower dynamics are frequent7 assumed t, LV

'quasi-static'. In the circuit context, however, the separation 3f t.*m

scales between the slow ind fast variable is net As large a is sj.V-ud by

the theorem.

As noted in the remark following -hecrem 3.3: if t .c :rler ! 3imits

is interchanged (i.e. 10 and then -40) , o.e recovers the !eteministic

develooment of Section 2. Before, we further elfmbr.%te and make precise

the statements Df the previous caragraph we indicate how -ne Analyses aamp'*

functicns Df the nr:cess generated by ' ., (3. ) in the lint thit

followed by - O. The ma-,r t--c1 -- h;s de':.C'pmen: is th'e woTk -f

Ventsel-Freidlin [13].

We consider here sample functions of the prccesE :enerited by

x = f yx,y) + , , x(O) = 0

= f(X,I) + , y(O) = y

with precisely the same assumptions as in Section 3. Let . ['x' y:
[0,] n

10,T] _ x PRbe a CI map from the interval 10,T] to the x, space

with X(0) =x 0 , (0) = Y0 * Define, for this trajectory, the funct-cnal

I){') by

0T! (t) - ..
I. J" L dt .(5.3)

0 1 d1
-.t -- gL" ",

gx,
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Figure 5: Visualization of the Trajectories on the
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Figure 6: Showing the Li-mit as N 0 of the Conditional

Densit, (x,V)
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Figure 8: Showing the Limit Behavior of p (x,y) for Example 3.5
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Figure12: Phase Portr-ait of the System (4.6o) ,(4.9)
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r-iure 13: . hcgi'r the Relaxation oscillation in the
Emitter Coupled oscillator
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Figure 14: Current Waveform i(t) for the Circuit of Flaure 1.
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Figure 15: Exnerimentally Observed Waveform for i(t) in
the Presence of Noise (after Abidi[l1D
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